Novel Role of ADAMTS-5 Protein in Proteoglycan Turnover and Lipoprotein Retention in Atherosclerosis*

نویسندگان

  • Athanasios Didangelos
  • Ursula Mayr
  • Claudia Monaco
  • Manuel Mayr
چکیده

Atherosclerosis is initiated by the retention of lipoproteins on proteoglycans in the arterial intima. However, the mechanisms leading to proteoglycan accumulation and lipoprotein retention are poorly understood. In this study, we set out to investigate the role of ADAMTS-5 (a disintegrin and metalloprotease with thrombospondin motifs-5) in the vasculature. ADAMTS-5 was markedly reduced in atherosclerotic aortas of apolipoprotein E-null (apoE(-/-)) mice. The reduction of ADAMTS-5 was accompanied by accumulation of biglycan and versican, the major lipoprotein-binding proteoglycans, in atherosclerosis. ADAMTS-5 activity induced the release of ADAMTS-specific versican (DPEAAE(441)) and aggrecan ((374)ALGS) fragments as well as biglycan and link protein from the aortic wall. Fibroblast growth factor 2 (FGF-2) inhibited ADAMTS-5 expression in isolated aortic smooth muscle cells and blocked the spontaneous release of ADAMTS-generated versican and aggrecan fragments from aortic explants. In aortas of ADAMTS-5-deficient mice, DPEAAE(441) versican neoepitopes were not detectable. Instead, biglycan levels were increased, highlighting the role of ADAMTS-5 in the catabolism of vascular proteoglycans. Importantly, ADAMTS-5 proteolytic activity reduced the LDL binding ability of biglycan and released LDL from human aortic lesions. This study provides the first evidence implicating ADAMTS-5 in the regulation of proteoglycan turnover and lipoprotein retention in atherosclerosis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sulfated Glycosaminoglycans Control the Extracellular Trafficking and the Activity of the Metalloprotease Inhibitor TIMP-3

Tissue inhibitor of metalloproteinase 3 (TIMP-3) is an important regulator of extracellular matrix (ECM) turnover. TIMP-3 binds to sulfated ECM glycosaminoglycans or is endocytosed by cells via low-density lipoprotein receptor-related protein 1 (LRP-1). Here, we report that heparan sulfate (HS) and chondroitin sulfate E (CSE) selectively regulate postsecretory trafficking of TIMP-3 by inhibitin...

متن کامل

Role of Lipoprotein Lipase Retention of Low-Density Lipoprotein in Atherosclerotic Lesions of the Mouse : Evidence

Direct binding of apolipoprotein (apo)B-containing lipoproteins to proteoglycans is the initiating event in atherosclerosis, but the processes involved at later stages of development are unclear. Here, we investigated the importance of the apoB–proteoglycan interaction in the development of atherosclerosis over time and investigated the role of lipoprotein lipase (LPL) to facilitate low-density...

متن کامل

Retention of low-density lipoprotein in atherosclerotic lesions of the mouse: evidence for a role of lipoprotein lipase.

Direct binding of apolipoprotein (apo)B-containing lipoproteins to proteoglycans is the initiating event in atherosclerosis, but the processes involved at later stages of development are unclear. Here, we investigated the importance of the apoB-proteoglycan interaction in the development of atherosclerosis over time and investigated the role of lipoprotein lipase (LPL) to facilitate low-density...

متن کامل

MMP-13 is constitutively produced in human chondrocytes and co-endocytosed with ADAMTS-5 and TIMP-3 by the endocytic receptor LRP1

Matrix metalloproteinase 13 (MMP-13) degrades collagenous extracellular matrix and its aberrant activity associates with diseases such as arthritis, cancer, atherosclerosis and fibrosis. The wide range of MMP-13 proteolytic capacity suggests that it is a powerful, potentially destructive proteinase and thus it has been believed that MMP-13 is not produced in most adult human tissues in the stea...

متن کامل

Serum amyloid A and lipoprotein retention in murine models of atherosclerosis.

OBJECTIVE Elevated serum amyloid A (SAA) levels are associated with increased cardiovascular risk in humans. Because SAA associates primarily with lipoproteins in plasma and has proteoglycan binding domains, we postulated that SAA might mediate lipoprotein retention on atherosclerotic extracellular matrix. METHODS AND RESULTS Immunohistochemistry was performed for SAA, apolipoprotein A-I (apo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 287  شماره 

صفحات  -

تاریخ انتشار 2012